CD28 Costimulation Regulates Genome-Wide Effects on Alternative Splicing

نویسندگان

  • Manish J. Butte
  • Sun Jung Lee
  • Jonathan Jesneck
  • Mary E. Keir
  • W. Nicholas Haining
  • Arlene H. Sharpe
چکیده

CD28 is the major costimulatory receptor required for activation of naïve T cells, yet CD28 costimulation affects the expression level of surprisingly few genes over those altered by TCR stimulation alone. Alternate splicing of genes adds diversity to the proteome and contributes to tissue-specific regulation of genes. Here we demonstrate that CD28 costimulation leads to major changes in alternative splicing during activation of naïve T cells, beyond the effects of TCR alone. CD28 costimulation affected many more genes through modulation of alternate splicing than by modulation of transcription. Different families of biological processes are over-represented among genes alternatively spliced in response to CD28 costimulation compared to those genes whose transcription is altered, suggesting that alternative splicing regulates distinct biological effects. Moreover, genes dependent upon hnRNPLL, a global regulator of splicing in activated T cells, were enriched in T cells activated through TCR plus CD28 as compared to TCR alone. We show that hnRNPLL expression is dependent on CD28 signaling, providing a mechanism by which CD28 can regulate splicing in T cells and insight into how hnRNPLL can influence signal-induced alternative splicing in T cells. The effects of CD28 on alternative splicing provide a newly appreciated means by which CD28 can regulate T cell responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Aberrant Alternative Splicing in Cancer

Alternative splicing can alter genome sequence and as a consequence, many genes change to oncogenes. This event can also affect protein function and diversity. The growing number of study elucidate the pathological influence of impaired alternative splicing events on numerous disease including cancer. Here, we would like to highlight the significant role of alternative splicing in cancer biolog...

متن کامل

Strong CD28 costimulation suppresses induction of regulatory T cells from naive precursors through Lck signaling.

CD28 costimulation is required for the generation of naturally derived regulatory T cells (nTregs) in the thymus through lymphocyte-specific protein tyrosine kinase (Lck) signaling. However, it is not clear how CD28 costimulation regulates the generation of induced Tregs (iTregs) from naive CD4 T-cell precursors in the periphery. To address this question, we induced iTregs (CD25(+)Foxp3(+)) fro...

متن کامل

IMMUNOBIOLOGY Strong CD28 costimulation suppresses induction of regulatory T cells from naive precursors through Lck signaling

CD28 costimulation is required for the generation of naturally derived regulatory T cells (nTregs) in the thymus through lymphocyte-specific protein tyrosine kinase (Lck) signaling. However, it is not clear how CD28 costimulation regulates the generation of induced Tregs (iTregs) from naive CD4 T-cell precursors in the periphery. To address this question, we induced iTregs (CD25 Foxp3 ) from na...

متن کامل

Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors.

Signals generated by T cell receptor (TCR) and CD28 engagement are required for optimal T cell activation, but how these signals integrate within the cell is still largely unknown. We have used near genome-scale expression profiling to monitor T cell signal transduction pathways triggered via TCR and/or costimulatory receptors. Ligation of CD28 alone induced a set of short-lived early response ...

متن کامل

Nuclear export of NF90 to stabilize IL-2 mRNA is mediated by AKT-dependent phosphorylation at Ser647 in response to CD28 costimulation.

IL-2 is one of the most important cytokines required for T cell-mediated immune responses. Costimulation of CD28 in T cells up-regulates IL-2 mRNA levels via transcription activation and mRNA stabilization. Upon T cell activation, NF90, an AU-rich element (ARE)-binding protein, translocates from the nucleus into the cytoplasm, where it binds to the ARE-containing 3' untranslated regions of IL-2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012